Effects of amino acid infusion on renal hemodynamics. Role of endothelium-derived relaxing factor.
نویسندگان
چکیده
Ingestion of protein or intravenous infusion of amino acids acutely elevates glomerular filtration rate (GFR) and renal plasma flow (RPF) by unknown mechanisms. Endothelium-derived relaxing factor (EDRF), now known to be nitric oxide derived from metabolism of L-arginine, participates in local regulation of vascular tone. To investigate the hypothesis that EDRF may participate in the renal vasodilatation and increased GFR after amino acid infusion, we characterized the effect of inhibition of EDRF synthesis with NG-monomethyl L-arginine (LNMMA) on basal renal hemodynamics and the response to infusion of a 10% mixed amino acid solution (1 ml/hr i.v.) in the rat. Renal arterial infusion of LNMMA (500 micrograms/kg/min) resulted in a significant increase in mean arterial pressure, decreases in GFR (20%) and RPF (44%), and a significant increase in filtration fraction. Pretreatment with the angiotensin II receptor antagonist Sar-Gly-angiotensin II did not prevent the increase in blood pressure but blunted the decreases in GFR (11%) and RPF (27%) after LNMMA infusion. Amino acid infusion in the untreated, fasted rat resulted in no change in blood pressure but significant increases in GFR and RPF; these effects were completely inhibited by intrarenal LNMMA but not an equihypertensive intravenous infusion of phenylephrine. In summary, EDRF participates in regulation of basal renal hemodynamics. Furthermore, amino acid-induced hyperfiltration and renal vasodilatation are completely prevented by inhibition of EDRF synthesis. We conclude that EDRF may participate in the renal hemodynamic response to amino acid infusion.
منابع مشابه
Nephrotoxicity of Isosorbide Dinitrate and Cholestasis in Rat: The Possible Role of Nitric Oxide
Background: Nitric oxide (NO), a major chemical form of endothelium-derived relaxing factor and an important regulator of vascular tone, is released by endothelial cells. The role of NO is not restricted to the vascular system, and it participates in the regulation of renal hemodynamics and renal excretory function. There are increasing evidences indicating that the elevated levels of NO play a...
متن کاملRapid Communication Effects of Af-Monomethyl-L-Arginine and L-Arginine on Acetylcholine Renal Response
Intrarenal infusion of acetylcholine in meclofenamate-treated dogs significantly increased renal blood flow, diuresis, and natriuresis. Intrarenal infusions of either A '̂-monomethylL-arginine (inhibitor of endothelium-derived relaxing factor formation), or L-arginine (precursor of endothelium-derived relaxing factor formation) did not modify basal levels of those parameters. However, the infusi...
متن کاملThe Possible Involvement of Nitric Oxide/Endothelium Derived Relaxing Factor in Atropine-Induced Vasorelaxation
Atropine has been used to block cholinergic neurotransmission in basic research. Large doses of atropine cause vasodilation of the blood vessels in the skin. This effect is apparently unconnected with the antimuscarinic activity of atropine and seems to be due to a direct action on the blood vessels. It has been suggested that atropine blocks muscarinic receptors at low doses and it induces th...
متن کاملIncreases in NO2-/NO3- excretion in the urine as an indicator of the release of endothelium-derived relaxing factor during elevation of blood pressure.
1. Under hormonally constant conditions, the effects of a sudden increase in blood pressure on the release of endothelium-derived relaxing factor were evaluated by measuring urinary excretion of NO2-/NO3- in rats with renal denervation. 2. Elevation of blood pressure from 136 +/- 2 to 153 +/- 3 mmHg by an aortic clamp below the renal arteries induced a significant increase in urinary excretion ...
متن کاملRole of endothelium-derived relaxing factor during transition of pulmonary circulation at birth.
To examine the potential role of endothelium-derived relaxing factor (EDRF) in regulation of the perinatal pulmonary circulation, we studied the hemodynamic effects of a selective inhibitor of EDRF production, nitro-L-arginine (L-NA), on pulmonary vascular tone and dilator reactivity in the late-gestation ovine fetus and on the pulmonary vasodilation that normally occurs at birth. L-NA infusion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 17 6 Pt 2 شماره
صفحات -
تاریخ انتشار 1991